Australian genetics group open up new avenues to salt-tolerant rice

posted in: Syndicated | 0

Improved Salinity Tolerance of Rice Through Cell Type-Specific Expression of [sodium pump] AtHKT1
This work presents an important step in the development of abiotic stress tolerance in crop plants via targeted changes in mineral transport.

Previously, cell type-specific expression of AtHKT1;1, a sodium transporter, improved sodium (Na+) exclusion and salinity tolerance in Arabidopsis.

In the current work, AtHKT1;1, was expressed specifically in the root cortical and epidermal cells of an Arabidopsis GAL4-GFP enhancer trap line. These transgenic plants were found to have significantly improved Na+ exclusion under conditions of salinity stress.

 The feasibility of a similar biotechnological approach in crop plants was explored using a GAL4-GFP enhancer trap rice line to drive expression of AtHKT1;1 specifically in the root cortex. Compared with the background GAL4-GFP line, the rice plants expressing AtHKT1;1 had a higher fresh weight under salinity stress, which was related to a lower concentration of Na+ in the shoots. The root-to-shoot transport of 22Na+ was also decreased and was correlated with an upregulation of OsHKT1;5, the native transporter responsible for Na+ retrieval from the transpiration stream. Interestingly, in the transgenic Arabidopsis plants overexpressing AtHKT1;1 in the cortex and epidermis, the native AtHKT1;1 gene responsible for Na+ retrieval from the transpiration stream, was also upregulated. Extra Na+ retrieved from the xylem was stored in the outer root cells and was correlated with a significant increase in expression of the vacuolar pyrophosphatases (in Arabidopsis and rice) the activity of which would be necessary to move the additional stored Na+ into the vacuoles of these cells.

Citation: Plett D, Safwat G, Gilliham M, Skrumsager Møller I, Roy S, et al. (2010) Improved Salinity Tolerance of Rice Through Cell Type-Specific Expression of AtHKT1;1. PLoS ONE 5(9): e12571. doi:10.1371/journal.pone.0012571

Follow David Tribe:

David Tribe is an applied geneticist, teaching graduate/undergrad courses in food science, food safety, biotechnology and microbiology at the University of Melbourne.