Transgenic corn’s resistance to pests has benefited even non-transgenic corn

posted in: Syndicated | 34

Genetically modified crop resistance to pests benefits non-modified crop, U of Minnesota study finds

Areawide suppression dramatically reduced the estimated $1 billion in annual losses caused by European corn borer

Transgenic corn’s resistance to pests has benefited even non-transgenic corn, a new study led by scientists from the University of Minnesota shows.

The study, published in the Oct. 8 edition of the journal Science, found that widespread planting of genetically modified Bt corn throughout the Upper Midwest has suppressed populations of the European corn borer, historically one of corn’s primary pests. This areawide suppression has dramatically reduced the estimated $1 billion in annual losses caused by the European corn borer, even on non-genetically modified corn. Bt corn, introduced in 1996, is so named because it has been bred to produce a toxin from the soil bacterium Bacillus thuringiensis (Bt) that kills insect pests.

Corn borer moths cannot distinguish between Bt and non-Bt corn, so females lay eggs in both kinds of fields, said the study’s chief author, University of Minnesota entomology professor William Hutchison. Once eggs hatch in Bt corn, young borer larvae feed and die within 24 to 48 hours. Because it is effective at controlling corn borers and other pests, Bt corn has been adopted on about 63 percent of all U.S. corn acres. As a result, corn borer numbers have also declined in neighboring non-Bt fields by 28 percent to 73 percent in Minnesota, Illinois and Wisconsin, depending on historical pest abundance and level of Bt-corn adoption. The study also documents similar declines of the pest in Iowa and Nebraska. This is the first study to show a direct association between Bt corn use and an areawide reduction in corn borer abundance.

Economic benefits of this areawide pest suppression have totaled $6.9 billion over the past 14 years for the 5-state region. Surprisingly, non-Bt corn acres accounted for $4.3 billion (62 percent of this total benefit.) The primary benefit of Bt corn is reduced yield losses, and Bt acres received this benefit after the growers paid Bt corn technology fees. But as a result of areawide pest suppression, non-Bt acres also experienced yield savings without the cost of Bt technology fees, and thus received more than half of the benefits from growing Bt corn in the region.

Paul Mitchell, an agricultural economist at the University of Wisconsin-Madison, and a co-author of the study, emphasized that “previous cost-benefit analyses focused directly on transgenic crop acres. This study is the first to include the value of areawide pest suppression and the subsequent benefits to growers of non-transgenic crops. In this case, the value of the indirect yield benefits for non-Bt corn acres exceeded the net value of direct benefits to the Bt corn acres.” The authors note that their analysis does not consider benefits for other important Midwestern crops affected by European corn borer, such as sweet corn, potatoes and green beans. Hutchison observed however, “that additional environmental benefits from corn borer suppression are likely occurring, such as less insecticide use, but these benefits have yet to be documented.”
The authors were able to document the suppression of European corn borer in Minnesota, Illinois and Wisconsin because state entomologists have monitored pest populations for more than 45 years in those states. Pest suppression and similar benefits to adopters and non-adopters alike may be occurring as a result of the widespread use of transgenic insect-resistant crops in other parts of the United States and the world, but those benefits cannot be documented without adequate data.

Finally, the authors emphasize that sustaining the economic and environmental benefits of Bt corn and other transgenic crops for adopters and non-adopters alike depends on the continued stewardship of these technologies. Farmers, industry, and regulators need to remain committed to planting non-Bt corn refuges to minimize the risk that corn borers will develop resistance to Bt corn. The Science magazine study shows that Bt corn is more valuable to society than originally realized, which makes maintaining its effectiveness even more important.

Contact: Patty Mattern
[email protected]
University of Minnesota
Press release

See BBC Item:
8 October 2010 Last updated at 08:06 GMT Share this pageFacebookTwitterShareEmailPrint
GM crops bring cash harvest to non-GM varieties
By Richard Black
Environment correspondent, BBC News

Insect pest control by genetically-modified crops can raise yields and profits from non-GM varieties grown nearby, a study from the US indicates.

Researchers looked at maize grown in five US states, where plants are affected by the European corn borer.

They found fewer borers – and higher profits – in GM fields, and in neighbouring non-GM fields.

Writing in the journal Science, they say this is the first time that a wider impact on profits has been shown… contd at link.

and also

REPORTS
Suppression of Cotton Bollworm in Multiple Crops in China in Areas with Bt Toxin–Containing Cotton
Kong-Ming Wu, Yan-Hui Lu, Hong-Qiang Feng, Yu-Ying Jiang, Jian-Zhou Zhao*
Transgenic cotton that has been engineered to produce insecticidal toxins from Bacillus thuringiensis (Bt) and so to resist the pest cotton bollworm (Helicoverpa armigera) has been widely planted in Asia. Analysis of the population dynamics of H. armigera from 1992 to 2007 in China indicated that a marked decrease in regional outbreaks of this pest in multiple crops was associated with the planting of Bt cotton. The study area included six provinces in northern China with an annual total of 3 million hectares of cotton and 22 million hectares of other crops (corn, peanuts, soybeans, and vegetables) grown by more than 10 million resource-poor farmers. Our data suggest that Bt cotton not only controls H. armigera on transgenic cotton designed to resist this pest but also may reduce its presence on other host crops and may decrease the need for insecticide sprays in general.

Science 19 September 2008:
Vol. 321. no. 5896, pp. 1676 – 1678
DOI: 10.1126/science.1160550

Follow David Tribe:
David Tribe is an applied geneticist, teaching graduate/undergrad courses in food science, food safety, biotechnology and microbiology at the University of Melbourne.