Unboxing GMO Ethos Chocolate

Frank N Foode poses with some GMO Ethos chocolate

For Valentine’s Day in 2019, A Fresh Look did something unusual. They launched the first GMO chocolate campaign, called Ethos Chocolate, and ran out of their stock in less than a day! There was plenty of excitement as free chocolates started to arrive, but not everyone got to try one. Now you can try them with me! I saved my box of Ethos Chocolate, and made an unboxing video. I tasted each one and talked about the stories that were told in chocolate form. My goal is to answer the question – is this GMO chocolate campaign Bitter, or Sweet?

Unpacking Ethos Chocolate stories

Each chocolate tells a different story about crop biotechnology and bioengineered foods. Papaya tells the story of survival, while a non-browning apple touches on trend-setting. An orange-flavored chocolate represents heroism, and dark chocolate carries the theme of optimism. Ethos chocolate has one more story to tell – did you find a fifth one in your box?

GMO Ethos chocolate on a tray with a glass of milk

I also talk about who is behind the Ethos chocolates, A Fresh Look, and critically analyze one response from a prominent critic of biotechnology. Is something missing from this chocolate campaign that needed to be right up front, or is it just a misunderstanding?

Finally, Ethos chocolates communicated something fresh about climate change that came from an unexpected source. Did you notice it? Because I certainly did – and I’m excited to tell you about it. Watch the video, and tell me what you think about Ethos chocolates!

Another chance to Feed your Ethos

If you didn’t get to try Ethos chocolates, now you have a chance to. They have re-launched their chocolate campaign, but this time you have to make a donation to their organization to get one. Getting free chocolates was pretty sweet, but if you’ve grown accustomed to chocolatey gifts you might find the donation level a little bitter-tasting. Why do they have to tug at our heart-strings like this?!

If you got a box of Ethos chocolates, what did you think of them? Were they just what you asked for, or could they be improved? Telling stories about biotechnology with food is a great way to reach the public about the impact of this technology, and teach about the underlying science. What stories do you think they should tell if they made new chocolates with different flavors?

Comment today to shape FDA biotech outreach

The Food and Drug Administration is accepting public comments on a new education and outreach initiative about biotechnology, mandated by Congress. Comments close on Friday, November 17th, and Biology Fortified strongly encourages scientists and members of the public to submit comments to help shape and inform this initiative. A public meeting was held this week in Charlotte, NC, and a second meeting will be held on Tuesday November 14th in San Francisco from 8 am to 1 pm, where members of the public can sign up to submit oral comments as well.
Education and outreach are extremely important to address the wide gap between the scientific literature and public perceptions about biotechnology, and these outreach efforts must themselves be informed by what we know about science communication. Biology Fortified will be submitting our own comments to the federal register, but if you take a look at the comments that have already been submitted online, you can see that there are very few informed comments at all, some of which make accusations of the FDA and swearing insults and implied threats against them. These comments, however, will do little to sway the FDA, but what will have an impact are informed, on-point comments that can help them navigate this issue.
Your comments can and do make a difference. Recently, the USDA scrapped new proposed rules regulating biotechnology that did not make much sense, and this was in part due to the detailed comments that they received. What does the FDA want to hear about?

We invite the public to share information, experiences, and suggestions that can help inform the development of the education and outreach initiative. We invite interested persons, including those participating in the public meetings, to respond to the following questions specifically regarding agricultural biotechnology and biotechnology-derived food products and animal feed:

1. What are the specific topics, questions, or other information that consumers would find most useful, and why?

2. Currently, how and from where do consumers most often receive information on this subject?

3. How can FDA (in coordination with USDA) best reach consumers with science-based educational information on this subject?

The comments received will help FDA identify education goals, messaging, and dissemination strategies for FDA’s Agricultural Biotechnology Education and Outreach Initiative.

If you wish to attend or tune into the live stream of the upcoming San Francisco meeting on Tuesday the 14th, there is more information on this page
Submit them online on the Federal Register site here. The deadline is Friday. November 17 – don’t delay!

GM Camelina can provide omega-3s for fish

Written by Rebecca Nesbit

The AquAdvantage Salmon is engineered to grow faster and could be fed Omega-3 enhanced crops like camelina.

Biotechnology in the fish farming industry hit the headlines in 2017 when a fast-growing salmon became the first GM animal to reach the market. In Europe, however, new developments in biotech’s potential for aquaculture went largely un-reported. Rather than focusing on the fish, British scientists are making progress towards creating fish food from a transgenic plant. For almost two decades, scientists from Rothamsted Research and their collaborators have been working towards providing oils for farmed fish from one of Europe’s oldest oilseed cropsLcamelina. The latest results bring them a step closer to realizing their vision.
Why focus on fish feed? To understand that we must think about where our fish and their nutrients come from.

The current problems with meeting our demand for fish

Over half of the fish we consume comes from farms, and aquaculture uses around 80% of the fish oil harvested annually from the sea. More fish goes into the system than comes out, which means that much of the fish caught from the wild goes to feeding farmed fish. Growing demand for omega-3 LC-PUFAs, particularly from aquaculture, has placed substantial pressure on the wild fisheries which supply much of this fish oil.

Camelina seeds. Credit: Rothamsted Research

The root of the problem is that that fish oils aren’t produced by fish. Instead fish acquire them from microalgae, which aren’t available to caged fish in farms. We don’t currently have financially-viable technology to produce algae on a large scale, so farmed fish are fed oil and meal made from fish caught from the oceans. In this way, the fatty acids consumed by the smallest fish accumulate all the way up through the food web.
 
Vegetable oil can be used as an alternative to fish oil in feed, but this changes the nutritional value of the fish people eat. Given that fish can’t make their own fish oils, they can only accumulate these oils if they consume them as part of their diet. Now that farmed fish have more vegetable oil in their diets, they are no longer providing consumers with the same level of omega-3 and the associated health benefits.
Producing the appropriate oils from plants has the potential to ensure that farmed fish bring their full benefits for human health, whilst simultaneously reducing pressure on wild fish stocks.

Promising results from 2017

Fatty acid profiles of wild-type and GM camelina seeds in both the lab and the field. From Usher et al. 2017

A new paper in Scientific Reports shows that their plants have the potential to yield oils in the field, and results published in the journal PLOS ONE showed that these oils are suitable food for salmon. The project, led by Professor Johnathan Napier, uses Camelina sativa (false flax), a distant relative of oilseed rape. Camelina is naturally high in short-chain omega-3, but it’s long-chain omega-3 that is important for fish food. To change the profile of oils in the seed, the team has introduced synthetic DNA sequences into the camelina genome. The introduced genes are similar to those found in marine microbes, and code for enzymes in the biochemical pathway which produces long-chain omega-3 polyunsaturated fatty acids (LC-PUFAs).
 
The oil can be extracted from the seed and fed to fish, and that is exactly what happened in the feeding trial reported in PLOS ONE. The newly-published data show results from a 2015 field trial of GM camelina, and confirm positive findings from 2014.
Firstly, results from both years show that the transgenic plants perform well in the field. The studies went beyond agronomic performance, as they also examined the composition, or profile, of the oil produced by the plant.
The profile of seed oil has also been improved relative to earlier varieties of transgenic camelina. Not only were the scientists looking to increase the concentration of desirable fatty acids, they were also keen to reduce the production of some of camelina’s natural oils. Omega-6 fatty acids are only present in low levels in marine organisms, so the latest varieties have been engineered to produce smaller quantities.
Salmon feeding trials have also seen positive results, and oil from GM camelina was an effective substitute for fish oil in feeds, supporting growth without compromising fish health. The fish accumulated fatty acids exactly as they would when fed oil from fish, creating a fish with the desired health benefits for consumers.
Trials on sea bream have also indicated that GM-derived oils could replace fish oils in their diets.

The future of camelina

The results published in 2017 indicate that oils from transgenic plants offer the opportunity to increase the levels of omega-3 LC-PUFAs in farmed fish to levels found a decade ago. Further development work is now taking place to make this a reality on a large scale.
The next steps for the project is to select the best camelina lines – i.e. those producing the highest levels of omega-3 fish oils. These plants will be used in larger field trials to demonstrate that they perform as well in the field as they do in the glasshouse.

Cross-sections of camelina seeds showing increased levels of Omega-3 fatty acids. From Usher et al. 2017

The work will then need to move from the research phase to development and commercialization. As well as planning how to make the crop available on a commercial scale, an essential step will be seeking regulatory approval. Although the research has been done in the UK, the status of the EU regulatory system means that the team will be applying for approvals outside of Europe.
Issues to be addressed before the plants are suitable for regulatory approval include freedom-to-operate (ensuring that no patents would be infringed if the crop is commercialized), and appropriate farm management. Camelina is predominantly self-pollinated but is visited by insects, so during the trials scientists addressed concerns from local beekeepers by covering the flowering crop with a fine mesh net to prevent bees from transporting GM pollen back to their hives. Such measures wouldn’t be feasible if the crop was grown on a commercial scale, but the team is considering the farm management practices which would be needed to prevent gene flow. Thankfully, camelina doesn’t cross pollinate with oilseed rape or other Brassica species, making large-scale planting more feasible without risking cross-pollination of other crops. In the end, to goal is to make aquaculture more environmentally sustainable while maintaining the healthy properties of the fish that we eat.
For updates on the project and more background reading, please visit the Rothamsted website. I also cover the topic in my book Is that Fish in Your Tomato?

Written by Guest Expert

Rebecca Nesbit is author of the popular science book ‘Is that Fish in your Tomato?’ which explores the fact and fiction of GM foods. She studied butterfly migration for her PhD, then worked for a start-up company training honeybees to detect explosives. She now works in science communication and her projects have ranged from a citizen science flying ant survey to visiting universities around the world with Nobel Laureates. In her spare time she writes fiction – she has published a novel, and many short stories.

Final steps on the GMO Corn Experiment

I’m excited to announce today that our first Citizen Science experiment, the “GMO Corn Experiment” is entering its final stage. It has been a long time coming, and I know each and every one of our participants have been waiting to hear the news about our results. I have a lot of things to tell you about in this update, and I’m happy to say that while we encountered some issues with analyzing all the voluminous data that our citizen scientists contributed, we have our results and are preparing them for publication. Along with this update, we want to make sure that every one of our citizen scientists gets a chance to get credit in the final paper.

I’m going to tell you a story spanning the beginning of the experiment right up to today. So to make sure everyone hears the news and gets the takeaways, here is where we are. The analysis of the data from the GMO Corn Experiment is complete, and we are preparing our study for publication. We encountered many difficulties when it came to analyzing all the data submitted to the experiment, but we worked through them and have some clear results that we presented at a scientific conference to get feedback from fellow scientists. We have verified the genetic identity of the ears of corn used in the experiment, and confirmed that they are equivalent in composition. We are sending out a survey to our Citizen Scientists so we can credit them in the paper, and when the paper is submitted we will hold a live broadcast announcement and release some of the results and award prizes to some of our participants who have completed our survey by August 25. Want to know all the details? Read on!

On data and difficulties

Several years ago, when I initially envisioned this project, I thought it would be nice to have 30, 50, or maybe even 100 experiments. That would give us some good numbers to get a satisfying conclusion. As we prepared to announce the project in late 2015, we were going with that plan. Long before the public announcement of the experiment, I requested ears of corn from Monsanto that we could use to test the claim that wild animals would avoid genetically engineered corn, and they agreed to grow two plots of corn in Hawaii and ship the ears to us. As we prepared for that public announcement, I got an email from Monsanto saying that they harvested 3,000 ears from each plot, and wanted to know how many I wanted. Hmm, how about all of them? 100 experiments turned into 2,000 potential experiments in 1,000 kits, thanks to our enormously successful fundraiser. If some data is good, more is better, right?

A year later, we had hundreds of completed experiments, and about 2,000 observations for us to go through. (Well, for me to go through!) As exciting as it was, this was a daunting task. When planning the experiment, we considered all kinds of ways that our citizen scientists could enter their data, and decided that sending photos would be the best way since we could always refer back to them if there was any confusion.

But analyzing images presented its own problems: how do we make sure that the numbers would be reliable and repeatable? The first thing we tried was to analyze the images based on color. The yellow maize kernels have a specific color, and the images can be analyzed to count up the pixels showing how much of the corn is left on either side of the image. By converting the images into false colors it would be just a matter of adding up pixels. Not only would it be repeatable but it would be done entirely without human judgements and whatever biases might be there. Reliable.

We knew that not all of the images would fit this kind of analysis. Some were blurry or taken at a distance, but if enough experiments made the cut we could use those to make our conclusions. It failed. There was simply too much variation in angles, distances, camera types and more to get good data out of this, as Kevin explained in an update he included in his podcast, Talking Biotech. It would be an easy thing to do if this experiment was done in a lab with a solid black background and a precisely positioned camera, but out in the wild as it were, we needed to find a better way.

Settling the score

As plant scientists, we went back to our roots with phenotyping. Plant biologists walk through fields rating plant phenotypes on number scales, so we applied that approach to the images. Anastasia Bodnar created a scale, and Kevin Folta gathered a group of volunteers to train and “score” the ears from 0% to 100% with that scale.

Guide for scoring how much of the ears were eaten, credit: Anastasia Bodnar

There was no need to have them score images that showed no consumption – or even complete consumption of the corn, so I sorted every experiment into one of three bins as to whether no corn was consumed, some of one or both of the ears were consumed, or both of the ears were fully consumed. Since a lot of time elapsed during the first analysis, we scooped up any more experiments completed on the website after our July deadline. By February they were all sorted, annotated, and ready for Kevin’s scoring team. They hammered through all the images and Kevin scanned their hard-copy data sheets so we could enter them into our spreadsheet.

Next came the careful process of checking the handwriting to make sure no 4s looked like 9s, and that the team followed the directions. I searched for individual bias (e.g. did person #3 tend to rate ears as higher or lower than the average?) and the variation was really low between each person. The fantastic thing about this data was that if the ear actually had 75% of the corn remaining, about half of the team put down 70%, and the other half, 80%, giving us an average that would be very close to the real value. Take one or two team members out and the data hardly changed at all.

Repeatable. But was it reliable? How could I tell that no one in the review team was fudging their numbers to prefer one result over another? They were all blinded. They had no idea which ears were GMO and which were non-GMO.

The blinded leading the blinded

Meanwhile, I sent of random samples of the GMO and non-GMO maize kernels that were collected at the start of the project to be analyzed for purity and composition. We needed to make sure that there wasn’t significant cross-pollination between the two plots that could erode our ability to draw conclusions from this experiment. Moreover, we needed to verify, independently, that all of the genetically engineered traits were present in the GMO variety as promised.

Seed samples labeled with random numbers, ready to ship!

There were supposed to be six different Bt traits and two herbicide-tolerance traits to consider, and if it is true that just one of them made wild animals skittish they all needed to be there. We also needed to make sure that Monsanto sent us comparable varieties of corn. If one had less protein or more starch than the other, that could confound our experiment. The tests came back and showed us that there was no evidence of cross-pollination between the plots, all of the traits were where they needed to be, and the compositions of each variety were the same. When the composition samples were sent off, they were assigned random numbers so the testing lab would not know which was which.

The next step, this spring, was to hand off the data to our statistician, Bill Price, who also joined the project. Bill developed some statistical models to analyze the data that came from Kevin’s team. I assigned new numbers to the genotypes in our data (based on the same random numbers I used for the composition analyses) so that Bill could focus on the data and not think about which one was which. He knew from his experience that even “A” and “B” carried meaning so he wanted random numbers. He got “253297” and “442392”. Can you tell which was which? (At the time of writing even I have to go check the spreadsheet to know.)

Why all the layers of “blinding?” Science is the search for empirical truth – knowledge that can be tested and verified through experimentation. Nature does not care what we believe – it operates the way it will – and our task as scientists is to determine the facts as carefully as we can. Human minds are tricky things, though, and we introduce subtle biases – sometimes without knowing it. Good scientists are committed to determining the truth no matter what their prior beliefs are. Doing experiments blinded ensures that subtle biases cannot creep into the experiment based on how we think the experiment should turn out. We also blinded our participants for the same reason. These details make the results more trustworthy for everyone involved – more reliable – and this is a standard that we hope will be adopted by more scientists on all sides of the biotechnology issue.

Presenting to peers

In June, we had our first opportunity to present our results to the scientific community. I gave a talk at the Plant Biology 2017 conference organized by the American Society of Plant Biologists. The conference was held in Honolulu, and brought scientists from around the country and from across the Pacific to learn about and discuss each others research with talks, poster presentations, and social events. I also organized a science communication workshop at the beginning of the conference. Presenting new research at conferences is an important step on the path to publication because it allows your fellow scientists an opportunity to ask questions, propose analyses you haven’t thought of, and generate a little buzz in the community as well.

Metacorn: Karl wears corn to talk about corn. Credit: Kevin Folta

It can also be a bit of fun. I’ve presented on my thesis research at a maize genetics conference before – the hardest, most nerve-wracking presentation I’ve ever given in my life. But standing in a room of experts, once you realize that you’re the expert on your own research it gets a lot easier. Now add the fact that we’ve got a fun story involving public questions and controversy, Nobel Laureates, funny wild animals, excited kids, and the biggest acknowledgements slide that you’ve probably ever seen. It was a blast! I filmed the talk, so don’t worry – you’ll get to see it. If you were paying attention to our Twitter feeds you may have seen some shots of a slide I prepared for the inevitable news leaks coming out of the conference. I saw cell phone cameras focusing during our big data slides, so I was ready with our social-media-friendly slide right after that. Are you ready?

You heard it here first at #PlantBio17, folks. All completely true. Credit: Jen Robi

Boom. Controversial, I know. The scientists in attendance were in good humor with this, so I proceeded to my next, and most important slide. I wasn’t just there to share our research – I had another agenda: to convince my colleagues that research can also be outreach. Afterward, several people told me that this was the most interesting part. We tend to think of research as discovering knowledge, and outreach as communicating knowledge. I think differently. I think that good research can also be designed as outreach, to both discover and communicate knowledge at the same time. And I believe that we can take this model and apply it to even bigger questions about food, biotechnology, and agriculture. Together, we can change the way that science is done and create a better informed society.

Paper the town

We’re getting down to the last phase of our project. With our results in-hand, and our conference presentation and discussions behind us, we’re busy preparing our paper to submit it to a peer-reviewed journal. For those who are not familiar with this step, we’re carefully writing up the methods, formatting the data, and making decisions on how to best present our results so that everyone can understand them, and so that other scientists could replicate them. There’s more data than what I presented in my talk, including validating our methodology, and so our challenge now is fitting it all together as a cohesive article. There are so many ways to present the data, so we’re choosing what tables, charts, and graphics communicate the most information.

Scientific Squirrels

The ears of corn we used for the experiment were donated by Monsanto, and we signed a Material Transfer Agreement with them, which allowed us to conduct our experiments with their corn, and laid out everyone’s rights. As part of that agreement, we will be sharing our results and our draft of the paper with them prior to submitting it to a peer-reviewed journal.

This is a very standard practice when scientists are studying patented material owned by someone else, and it ensures that we can publish our results – whatever we find – and they get a heads-up on it before we go to publication. Their scientists may even make suggestions such as how to describe their maize varieties or suggest analyses, but we alone have the power to do anything based on those suggestions. To show everyone how this process works, when all is said and done we will show you what we sent them, what they sent back, and any changes we made based on that information.

Then, the paper goes off to a scientific journal to undergo peer review, where anonymous scientists will pick it apart, rate the quality, novelty, newsworthiness, etc. They may recommend publication, revision, or rejection. We might have to make changes and send it back, and we’ll keep you updated on the process when it happens. When we get it published later this year, we’ll have so many stories to tell about this project. It will make a splash!

Credit where credit is due

We can’t take all the credit – because so much of the success of this experiment is due to the work of our Citizen Scientists, donors, and supporters. That’s why we’re taking special care to make sure that everyone involved, from donors to participants, get credit for their contributions.

That’s right, if you were a part of this project, YOU WILL GET YOUR NAME IN OUR PAPER! Although our list is huge, online publishing has no practical size limits so you will get to see your name preserved permanently as part of the scientific record in a supplemental acknowledgements section. To make sure that each and every one of you get credited the way you want, we are sending out a survey over the next couple days to our study participants. Look for it, and please fill it out right away! If you do not receive it by Monday, please contact us and we will make sure that you get it.

Remember when you signed up for the experiment, we agreed to keep your personal information private. So in order to credit you we need your permission – and the great part of this is if you want to highlight the contributions of your K-12 research team, you can choose how to credit them. If you want to remain anonymous, you can choose that option as well. (Experiment.com donors who did not participate in the experiment do not need to fill out this survey as their contribution is already public and will be included in our acknowledgements.) As an extra incentive for finishing our survey, we’re going to award some prizes for participation.

Did you say awards? Prizes?

Yes I did! Remember how I said that I read through over 2,000 observations? How I sifted through hundreds of experiments, and all the images they contained? I could see all the work you put into these experiments. I could sense the enthusiasm, the creativity, the frustration, and the satisfaction. I remember one citizen science team that kept repeating their experiment over and over again, taking notes saying that no animals touched the corn. Diligently, for two weeks, taking photos, resetting the experiment, and gathering weather data. Then came the day that they finally attracted the attention of wild animals, corn was getting eaten and exclamation points were everywhere. I half jumped out of my seat! That kind of dedication deserves recognition.

More teams impressed me with their detail-oriented approach – taking careful and comprehensive observations. Others took incredible and sometimes hilarious photos. There was some good humor involved in some of the experimental data – “kids” in the list of wild animals active in the area, signs posted in the background of their experiments, and prosaic observations. I could see some future scientists in there. We need an award ceremony.

When you get the survey, fill it out and you are entered to win one of several awards for your participation, including several randomly-selected prizes. Fill it out by August 25th!

When we submit our paper we will hold a live streamed broadcast to announce the submission, release some of our results to the public, and celebrate everyone’s contributions and announce the awards. Stay tuned, because the most exciting part is yet to come.

Pope Francis issues cautious statements about GMOs

(Editor’s note: Introduction by Karl Haro von Mogel) On Thursday the 18th of June, the Vatican published an encyclical written by Pope Francis – an open letter addressed to “every living person on this planet.” The bulk of this encyclical focused on addressing climate change and other detrimental impacts that humans are having on the environment. Subtitled On Care for Our Common Home, it called for a revolution in how we think and act about climate change, which to this day remains a politically divided issue despite the overwhelming scientific consensus.

Pope Francis blesses a sample of Golden Rice at the Vatican, 2013
Pope Francis blesses a sample of Golden Rice at the Vatican, 2013

There was a passage that discussed genetically engineered crops, which caught the attention when a draft version of the encyclical was apparently leaked on Monday. Two years ago, the creator of Golden Rice, Ingo Potrykus, had asked Pope Francis to bless a small sample of the genetically engineered and pro-vitamin A-producing staple crop, which he hopes will help cure blindness in developing countries. Francis, who himself has a scientific background, obliged.
But if you had read statements on sites that regularly campaign against GMOs, you may have thought that the Pontiff “Slammed” GMOs as harmful in the upcoming encyclical. When it was first published, Andrew Revkin quickly pointed out that the Pope did not seem to opine so negatively about biotechnology. (Revkin is writing a series of posts about the environmental and political aspects of the enclyclical which are worth checking out.)
Drew Kershen, the Earl Sneed Centennial Professor of Law (Emeritus) at the University of Oklahoma College of Law perused the 184-page and 246 paragraph encyclical to see just what the open letter actually says about biotechnology and how this fits into the context of both what we know about the technology and how the Vatican approaches such topics. He sent Biology Fortified his comments, which are reproduced in full below.

Comments by Drew Kershen:

kershenThe encyclical praises human creativity as expressed through science and technology.  Yet that praise is immediately followed with expressions of concern about abuse of humans and the earth through economic power or a “technological paradigm” which fails to distinguish properly between what can be done and what should be done.  The encyclical calls for a human centered view of ecology and warns of valuing plants and animals above human beings.  But at the same time, the encyclical warns constantly about the abuse of power and human hubris that is destroying the earth and its resources in a quest for wealth and consumerism.  The encyclical uses the word “sustainable” (or its variations) numerous times and promotes a sustainable view of ecology as developed through international consensus, such as the Convention on Biodiversity (Rio de Janeiro 1992), because international consensus promotes the common good rather than individual interests.
With specific reference to biotechnology and genetic modification, I think paragraphs 133-134 give an accurate sense for the encyclical in this specific topic and in general. (Editor’s note: Quotation is paragraphs 131-136)
New biological technologies

  1. Here I would recall the balanced position of Saint John Paul II, who stressed the benefits of scientific and technological progress as evidence of “the nobility of the human vocation to participate responsibly in God’s creative action”, while also noting that “we cannot interfere in one area of the ecosystem without paying due attention to the consequences of such interference in other areas”. He made it clear that the Church values the benefits which result “from the study and applications of molecular biology, supplemented by other disciplines such as genetics, and its technological application in agriculture and industry”. But he also pointed out that this should not lead to “indiscriminate genetic manipulation” which ignores the negative effects of such interventions. Human creativity cannot be suppressed. If an artist cannot be stopped from using his or her creativity, neither should those who possess particular gifts for the advancement of science and technology be prevented from using their God-given talents for the service of others. We need constantly to rethink the goals, effects, overall context and ethical limits of this human activity, which is a form of power involving considerable risks.
  2. This, then, is the correct framework for any reflection concerning human intervention on plants and animals, which at present includes genetic manipulation by biotechnology for the sake of exploiting the potential present in material reality. The respect owed by faith to reason calls for close attention to what the biological sciences, through research uninfluenced by economic interests, can teach us about biological structures, their possibilities and their mutations. Any legitimate intervention will act on nature only in order “to favour its development in its own line, that of creation, as intended by God”.
  3. It is difficult to make a general judgement about genetic modification (GM), whether vegetable or animal, medical or agricultural, since these vary greatly among themselves and call for specific considerations. The risks involved are not always due to the techniques used, but rather to their improper or excessive application. Genetic mutations, in fact, have often been, and continue to be, caused by nature itself. Nor are mutations caused by human intervention a modern phenomenon. The domestication of animals, the crossbreeding of species and other older and universally accepted practices can be mentioned as examples. We need but recall that scientific developments in GM cereals began with the observation of natural bacteria which spontaneously modified plant genomes. In nature, however, this process is slow and cannot be compared to the fast pace induced by contemporary technological advances, even when the latter build upon several centuries of scientific progress.
  4. Although no conclusive proof exists that GM cereals may be harmful to human beings, and in some regions their use has brought about economic growth which has helped to resolve problems, there remain a number of significant difficulties which should not be underestimated. In many places, following the introduction of these crops, productive land is concentrated in the hands of a few owners due to “the progressive disappearance of small producers, who, as a consequence of the loss of the exploited lands, are obliged to withdraw from direct production”. The most vulnerable of these become temporary labourers, and many rural workers end up moving to poverty-stricken urban areas. The expansion of these crops has the effect of destroying the complex network of ecosystems, diminishing the diversity of production and affecting regional economies, now and in the future. In various countries, we see an expansion of oligopolies for the production of cereals and other products needed for their cultivation. This dependency would be aggravated were the production of infertile seeds to be considered; the effect would be to force farmers to purchase them from larger producers.
  5. Certainly, these issues require constant attention and a concern for their ethical implications. A broad, responsible scientific and social debate needs to take place, one capable of considering all the available information and of calling things by their name. It sometimes happens that complete information is not put on the table; a selection is made on the basis of particular interests, be they politico-economic or ideological. This makes it difficult to reach a balanced and prudent judgement on different questions, one which takes into account all the pertinent variables. Discussions are needed in which all those directly or indirectly affected (farmers, consumers, civil authorities, scientists, seed producers, people living near fumigated fields, and others) can make known their problems and concerns, and have access to adequate and reliable information in order to make decisions for the common good, present and future. This is a complex environmental issue; it calls for a comprehensive approach which would require, at the very least, greater efforts to finance various lines of independent, interdisciplinary research capable of shedding new light on the problem.
  6. On the other hand, it is troubling that, when some ecological movements defend the integrity of the environment, rightly demanding that certain limits be imposed on scientific research, they sometimes fail to apply those same principles to human life. There is a tendency to justify transgressing all boundaries when experimentation is carried out on living human embryos. We forget that the inalienable worth of a human being transcends his or her degree of development. In the same way, when technology disregards the great ethical principles, it ends up considering any practice whatsoever as licit. As we have seen in this chapter, a technology severed from ethics will not easily be able to limit its own power.

My evaluation:

There is much in the encyclical with which probably everyone can agree.  I certainly read the encyclical with “an open heart”, as Pope Francis requested yesterday in discussing the pending release of the encyclical.  I believe that my work does indeed abide by the spirit and the goals of this encyclical.  Hence, I am encouraged, not discouraged by the encyclical.
The encyclical can be read favorably to agricultural biotechnology primarily because it does not condemn or attack science and technology.  But at the same time, the encyclical clearly adopts a cautious approach to agricultural biotechnology.  The encyclical is not against science or technology but worries about socio-economic concerns that I think are factually incorrect or overemphasized as “significant difficulties.”  In other words, although the encyclical would appear to favor agbiotech such as Golden Rice, the encyclical also has the tenor of a predisposition to favor “agroecology” as opposed to “sustainable intensification” as the way forward for agriculture.  Note that I have said the encyclical has a “predisposition” but not a “commitment” (a belief) about the way forward for agriculture.  The encyclical also has a firm commitment to international organizations and governmental planning as seeking the “common good.”  I do not share that belief because it ignores, in my opinion, the power politics that drives international organizations and governments.  I do not share the belief that international organizations and governments are often, generally, (or even) ever seeking the common good.
PopeFrancis
Relevant terms and in what paragraphs they may be found:
Biotechnology:  102, 104, 132.
Genet(ic,ics,ally): 131, 132, 133, 138.
GM: 133-134.

Thoughts About Norm Borlaug for his 100th Birthday

Written by Steve Savage. Graphs by Steve, based on FAO and Geohive data.

Norman Borlaug would have been 100 years old last week.  He has been called “The Man Who Fed The World,” and “The Father of The Green Revolution.”  Norm Borlaug was the first plant pathologist to be awarded a Nobel Prize (1970) – for contributions to world peace. For all of use who are fellow plant pathologists, his work has been particularly inspiring.

It is a good time to look back at how the challenge of feeding the world population was met during Borlaug’s career, because we have a similar challenge ahead of us. The chart below shows global population from 1950 with a projection to 2100.  I’ve been looking at food production data available from the UN Food and Agriculture Organization (FAOSTAT).  If we look at the half century since FAO started tracking it in 1960,  global population increased by 3.89 billion.  Between 2010 and 2060, global population is projected to rise by another 3.04 billion.

Between 1960 and 2010, production of most crops did manage to keep up with population growth and for many crops there was actually more available per person in 2010 than in 1960.  Living standards also improved in many parts of the world, which meant that people were able to enjoy that per capita increase.  Fertility rates have declined with the education of women combined with improvements in living standards and food security. It is projected that global human population will level off by around 2100 due to these factors.

The increase in food production during Borlaug’s era was mostly achieved through increased yield on each acre or hectare grown, not from farming more land.  That was made possible by agronomic improvements,  including the breeding advances that came from the work of Borlaug and many others.

graph2

In the graph above, the two bottom, green bars show the global crop area in the window 1960-65 (1.09 billion hectares) and 2005-10 (1.45 billion hectares).  The increase, shown in the red bar, is 362 million hectares. That is an enormous amount of land, but without increased yield, it would have taken nearly 3.1 billion hectares (blue bar) to have provided the amount of food that was available to the world by 2010.  That effectively means that the global farming community, and those that aided it with technologies, advice and expertise, “saved” more than 1.6 billion hectares of land from being converted from a natural state into farmland.  Realistically, there is not that much land which could ever be farmed.

Many of Borlaug’s contributions were to the staple food crop – wheat.

Wheat is not a single crop, but a collection of many different types of wheat grown for different kinds of food ranging from hearty breads, to pasta, to crackers, to flat breads to soft noodles. By the end of this 50 year window, the world’s wheat farmers were producing 2.69 times as much wheat as in 1960. However, 97% of that increase (green part of the bar) was enabled by higher yields.  Only 10 million more hectares were being grown. That meant that the world could continue to have enough wheat without the need for adding 346 million more wheat hectares.  That is the legacy of Borlaug and the other participants in the Green Revolution.

The story with rice is almost as positive.  In 2005-10, humanity had access to 2.9 times as much rice as in 1960-65, and 83% of the increase was attributable to yield with 39 million new hectares added.  That meant that there were 187 million hectares which did not need to be added to the rice production base.

The story behind these higher yields is complex and varies across geographies. The details of how we might continue this sort of progress through 2060 are also complex and will involve new challenges such as climate change.  Even so, on this important anniversary it is fitting to look back at the remarkable accomplishments of the past to find inspiration for the challenges of the future.  Let us hope that at the 150th anniversary of Norm Borlaug’s birth people will once again be able to look back and tell this kind of story.  A story about humanity continuing to be fed, but without having had to add much if any new farmed land.  Even into his 90s, Borlaug continued to be an articulate proponent for letting farmers use the full toolbox of technologies, including biotechnology, to pursue such goals.  Now it is up to us to continue to make that case.

Written by Guest Expert

Steve Savage has worked with various aspects of agricultural technology for more than 35 years. He has a PhD in plant pathology and his varied career included Colorado State University, DuPont, and the bio-control start-up, Mycogen. He is an independent consultant working with a wide variety of clients on topics including biological control, biotechnology, crop protection chemicals, and more. Steve writes and speaks on food and agriculture topics (Applied Mythology blog) and does a bi-weekly podcast called POPAgriculture for the CropLife Foundation.

Counting The Cost of the Anti-GMO Movement

Written by Steve Savage

Mark Lynas’s speech has had over a quarter of a million downloads

Last week, environmentalist Mark Lynas presented an articulate and painfully honest apology for his significant role in starting the anti-GMO movement in the 1990s.  He said that it was the most successful campaign in which he has ever been involved, but after finally looking into the science, he now deeply regrets what he and others accomplished.  While it is gratifying to have a figure like Lynas make such a turn-about, it does nothing to mitigate the damage of which this anti-science movement has perpetrated on humanity and the environment.  Ideally, such a dramatic reversal will induce others in the movement to rethink their positions. but this sort of openness to letting the science speak into bias is likely to be rare.
Lynas is right that anti-GMO campaigners have been extremely successful at blocking, delaying, or destroying potential crop improvements via biotechnology.  Lynas had a lot of ground to cover in his speech, so he only gave four examples of the ways that his previous movement has achieved its ends: Continue reading “Counting The Cost of the Anti-GMO Movement”

Interviews: Getting the facts on Proposition 37

Three days ago, I announced that I would be interviewing the proponents and opponents of California Proposition 37, which if passed would require labels on foods made from genetically engineered crops. There has been a lot of debate about this issue, for as long as genetically engineered crops have been around.
I participated in a chat last week that Mercury News put on, which had both Stacy Malkan and Kathy Fairbanks answering questions and debating each other, and it was pretty hectic, disjointed, and somewhat uncivil. It didn’t answer any of the questions that I had about the proposition – so I was inspired to contact the two campaigns to do an interview for the Biofortified Blog. Stacy Malkan agreed to represent the Yes on 37 campaign, and Kathy Fairbanks agreed to represent the No on 37 campaign. I’m happy to say that the interviews, recorded on Monday and Tuesday, have now been [minimally] edited and are now up for you all to enjoy. Continue reading “Interviews: Getting the facts on Proposition 37”

Interview with Dr. Gia Aradottir

In England, there is an important experiment underway. A research group at the Rothamsted Research station in Harpenden, is testing a variety of wheat that has been genetically engineered to scare away aphid pests. If successful, the experiment could demonstrate the effectiveness of a novel, environmentally-friendly way to manage pests.

However, a protest group is threatening the ability of the researchers to continue their project, and there have been a lot of claims made about the research. To help shed some light on this experiment, I interviewed Dr. Gia Aradottir, a biologist who is involved in the project.

KJHvM: Can you tell us a bit about yourself and how you came to work at Rothamsted and on this project? What is your role in the project?

GA: I’m the newest member of the GM wheat team, I joined the E-β-farnesene project a year and a half ago. I did my PhD jointly at Rothamsted Research and Imperial College London where my work focused on the giant willow aphid (Tuberolachnus salignus), chemical ecology and population genetics. My PhD project was partly supervised by the chemical ecology group and when I had the opportunity to join, I jumped at the chance.

We have a fantastic team of people working together, and a lot of interdisciplinary possibilities with the different departments within Rothamsted and the wider scientific community. We work on a number of projects, and my contribution to this particular project has been insect behavioural studies and analysis of the volatile profiles of the GM wheat.

KJHvM: Can you explain the experiment for our readers? What is the nature of the trait, how it works, and how it could change wheat production if it is successful? How important is this research?

GA: I like to say that we are helping plants to protect themselves against insects. The trait engineered into the wheat plant is the volatile emission of the aphid alarm pheromone (E)-β-farnesene (EBF).

Semiochemicals such as EBF are chemical messages which are used generally by insects and in this case by aphids, both in gathering information about their environment and in signalling to each other. When an aphid is attacked by a predator it emits EBF from its cornicles, which is recognised by the other aphids as an alarm pheromone, so they can escape. (E)-β-farnesene is present in many plant species, but is normally emitted in combination with other plant volatile organic compounds (VOCs). Research by our group has shown the importance of blends and ratios of plant VOCs to insect responses, and the fact that wheat emits almost no other volatiles means that we can fool the aphids into thinking the wheat emitted EBF comes from a fellow aphid.

Rhopalosiphum padi is afraid, very afraid.

The second line of defence comes from aphid predators that have come to recognise EBF as a cue that there are aphids in the area, and are attracted in by the aphid alarm signal. We have tested insect responses to two GM events in the lab, where we observed very good responses to the traits by both aphids and predators. If this works equally well in the field, this wheat would be protected against the diseases and yield losses caused by aphids. This would reduce the need for chemical input by the farmer, avoid collateral damage of beneficial insects caused by use of insecticides, and contribute to sustainable agriculture.

KJHvM: How is this strategy different from the kinds of GE traits that people may be more familiar with? Can traits like this be employed in a large number of crops?

GA: This method would affect the behaviour of the insect by changing the way the plant smells, making it avoid its host-plant, and is therefore a non-toxic method of pest management. The reason this could work well in the aphid-wheat system is because wheat doesn’t emit many other VOCs, so the aphid perceives it as a pure alarm pheromone. It might be possible to use similar traits in other insect-plant systems, but as pest insects often specialise on only one or few host-plants, and the volatile profile of each plant species is different, each system would need to be studied separately.

KJHvM: What kinds of other changes might happen to the wheat as a result of this new trait? Does it alter the flavor, texture, yield, or other properties of the plants? What do you know about this genetically engineered wheat already, and what are you hoping to achieve with the trial?

GA: There are no phenotypic changes in the GM wheat plants compared with the control plants. Over 400 plants already produce EBF. Three new proteins are made by the GM plants which are all widely occurring in nature, non-toxic and non-allergenic, posing no safety concerns that we know of.

The proteins are (E)-β-farnesene synthase, farnesyl pyrophosphate synthase and phosphinothricin acetyltransferase. The first two are common proteins found in many organisms (some that are part of the food and feed chains). The third is a bacterial protein used as a selectable marker but is not needed for aphid resistance and could be removed before commercialisation.

We will do further measurements on the quality, yield etc at the harvest of the field trial. We have had very positive results in laboratory experiments and by doing this trial in field conditions we want to establish whether the EBF emission by the wheat plants significantly alters aphid behaviour, repelling them away from the plants, as well as attracting aphid predators into the crop in an open air situation. This has the potential to become a non-toxic method of pest control.

KJHvM: What kinds of changes might be expected to happen with aphid populations? What do we know about the ability of aphids to adapt to constant exposure to this pheromone?

GA: Our field trial is only being conducted at a very small scale. There are only eight 6x6m plots of GM wheat planted, so this will not have any effect on aphid populations. At present aphids are controlled using pesticides, which do collateral damage to other beneficial insects, such as ladybirds and parasitic wasps. Any pest management system will eventually experience a level of resistance.

However, in this case the level of defence is twofold, if the aphids become habituated to their own alarm pheromone they would not be able to warn each other of danger. Because adapted aphids would be more vulnerable to predators, there will be a selective pressure on the aphids to keep responding to the alarm pheromone.

(Editor’s Note: This paper describes how one aphid species experiences fitness costs after becoming habituated to E-β-farnesene. Fearless aphids get eaten by Ladybugs. Also see this video that shows how aphids react to this pheromone.)

KJHvM: There has been some confusion about the nature of the genetic change. I understand that one gene came from peppermint, but some people have been talking about its similarity to a gene from cows. Can you unravel this confusion? Is the sequence publicly available for making comparisons?

GA: Our plants contain two functional, codon-optimised, synthetic genes but the ACRE (UK Advisory Committee on Releases to the Environment) consent process specifically requires the applicant to name the ‘source organism’ of the genes being transferred. We questioned this exact point with ACRE and, although the DNA added to wheat was chemically-synthesised and not actually taken from any organism, we were required to name the closest match in our application.

The EBF synthase gene is based on the peppermint gene and that is the closest match. We purposefully chose an animal form of the FPP synthase gene because there was evidence that the enzyme would function more efficiently and that it was less likely to be down-regulated by the plant. We happen to base our synthetic FPP gene on a sequence that encodes the cow form of the enzyme, although FPP synthase is found in many animals and plants and we are currently looking to see whether plant versions would work just as effectively. Thus, there is a tiny piece of genetic material in one of our GM lines that has some sequence similarity with a cow gene. But it is not from a cow and was synthesised in the lab.

The field trial will compare the performance of that line with another line that only has the peppermint based gene. It may not be necessary to continue development of that line if the peppermint based gene is shown to perform well on its own.

We also need to keep in minds that this is an experimental system, to test a concept. It is not a plant that is being grown for food. Synthetic genes as this is common practice in molecular biology experiments now (quicker, cheaper and easier to use in an experimental system). The wheat from this experiment will be cultivated, measured and destroyed in accordance with stipulations made by ACRE. It is not designed for human consumption. Even if the experiment does repel aphids under field conditions as well as it has done under our extensive laboratory experiments (we will not know this until after the experiment), then many more years of continued carefully controlled experimentation will be required, including looking at the precise DNA sequences used. The actual sequence used in the GM plants has not been published yet, but will be included in a future publication.

Is Take the Flour Back pro-aphid?

KJHvM: I understand that a group of protesters calling themselves “Take the Flour Back” are objecting to this trial, and are threatening to vandalize the wheat on or before May 27. I also understand that a significant part of the budget is being spent on security. Was this response expected? Are you confident that you would be able to protect the trial?

GA: When we heard about the protest we contacted the organisers to ask if we could be of assistance on the day of protest and establish a dialogue. It was only later that we heard they were planning to destroy the experiment. If someone is intent on destroying the trial at any cost, they will find a way to do so. However, we hope that by appealing to the protesters and explaining the work we do, they will see the real benefits this could provide to sustainable agriculture in the future. It is upsetting to think that the work may be compromised, but we cannot go into the future building bigger fences around our research. We need to be able to conduct experiments openly in a safe and responsible manner. The plot is surrounded by a perimeter fence that has been erected to prevent the entry of rabbits, other large mammals, and unauthorised people to the site. There is also a security guard on duty at all times. The value of the whole project is £732.000 and an additional £245.000 was provided for security measures.

KJHvM: What progress has been made starting a dialogue with the protesting group?

GA: We sent a letter and a video message to the protesters, asking them to reconsider their planned attack on our experiment. They have written back to us saying they would welcome the opportunity to engage in a public debate with us. We have contacted them twice since to arrange a public debate, but are still awaiting a reply.

Support GM Wheat Trials
Frank won’t sleep until the wheat is safe!

KJHvM: What can scientists and other supporters do to show their support, or even help on May 27 (or after) if the protesters ultimately decide to try to destroy the experiment? Will there be a counter-protest?

GA: We are very grateful for all the support we have received from the public which has included people from all walks of life not just scientists. The best way for people to show their support is by signing the petition that sense about science started upon seeing our video and letter.

I do not think a counter protest on the day, however well-meaning, will actually help as it is likely to increase tensions and confuse issues. We recommend that anyone who wants to support us does not come down on the day, but instead show their support via other channels before the protest day. A handful of our scientists will be available on the day to engage in dialogue with the protesters and we will do what we can to facilitate a peaceful protest. We should leave it in the very capable hands of the police who will deal with anyone who breaks the law.

KJHvM: Where can people go to find out more information?

GA: General information about the trial can be found on the Rothamsted Research website. Here are also links to the key publications on the project in Nature, PNAS, Journal of Experimental Botany, and Journal of Chemical Ecology.

And finally, here is a link to our petition where we ask people to support our right to conduct research without the threat of it being destroyed.

KJHvM: Some of these questions came from the Biofortified Blog community, and I have also asked Dr. Aradottir to stick around for the discussion and help address any other questions our readers might have. Her research group is very busy both with their experiments and also with the enormous amount of media attention that this experiment has attracted. (I signed their online petition when there were only 30 people on it, and now supporters number over 4,000.) We are very lucky to have this kind of detailed information during this developing story, and for that I am very thankful to Dr. Aradottir and everyone else who contributed.

GMO Food Is Actually Already Labeled If You Know A Few Rules

Written by Steve Savage

Back in 1995, I was party to some discussions about whether about-to-be-released GMO crops should be labeled at the consumer level.  It was clear that a failure to do so would look to some like a conspiracy, but we also realized that it would be far too expensive to track the great rivers of grain well enough to be able to label everything accurately.   Practicality won the day and GMO foods were never labeled.  15 years later this decision is still being needlessly debated.

Why You Can’t Really Track All Grain

It does not normally make sense for a farmer to have his/her own harvesting equipment.  There are “custom, contract harvesters” who move from South to North during the harvest season.  There are always some grains left in the harvester as it moves from field to field.  The grain is then hauled to local “elevators” which are used to store grain.  They only have a few silos which end up containing grain from dozens to hundreds of fields.  Segregating the GMO portion of the crop is not possible at this stage.   To ask this system to segregate and track GMO is absurd.  It is much more practical to “identity preserve” the small amount of non-GMO crop.  That also usually involves paying a price premium. Continue reading “GMO Food Is Actually Already Labeled If You Know A Few Rules”